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COMMENT 

A note on current algebra in QCD, and two-dimensional 
chiral theories 

P Kosinski 
Institute of Phqsics, Uni\ersit> of Lodz, Nouo tk i  149. 90-236 Lodz. Poland 

ReceiLrd 28 J u l i  1989 

Abstract. Current algebra for QC D: and  two-dimensional chiral gauge theories i s  deri \ed 
in a straightforuard way from the effective action. 

I n  memorJ of kldrysia 

Much progress has been made recently in understanding the strl;cture of two- 
dimensional gauge theories. The main contribution was the explicit evaluation of the 
fermionic determinant in two dimensions ( D’Adda er a1 1983, Polyakok and Wiegman 
1983, Alvarez 1984, Bothelho and Monteiro 1984, Rothe 1986, Nepomechie 1984). 
Using this result, Witten’s bosonisation rules (Witten 1984) were generalised to include 
the gauge fields (DiVecchia and Rossi 1984, DiVecchia et a1 1984, Gonzales and 
Redlich 1984, Gamboa Saravi et a /  1985a). The bosonisation rules for the fermionic 
currents allowed in turn the derication of the current algebra in QCD, (Gamboa Saravi 
et a1 1985b). 

The above results were obtained within the Euclidean approach which also has 
some disadvantages. For example, the current algebra for QC D? was obtained somewhat 
indirectly: the commutation rules were written down which reproduced the transforma- 
tion properties following from the bosonised form of fermionic currents (Gamboa 
Saravi et al 1985b). 

On the other hand, we sometimes want to keep the gauge fields unquantised and  
understand the physics behind this approximation. This is especially the case for 
anomalous theories where no unique consistent quantisation scheme for the gauge 
fields seems to exist (at  least at the level of renormalisable theories in four dimensions). 

While no direct connection between the Minkowskian and Euclidean space versions 
of external gauge field problem exists, Makowka and Wanders (1985, 1986) showed 
in an interesting paper how to generalise the results of D’Adda er a1 (1983) and others 
to the Minkowskian case. Using their results, we rederive here the current algebra for 
Q C D ~  as well as for anomalous chiral theories in two dimensions. 

Let us start with a short recapitulation of the paper by Makowka and Wanders 
(1986). The effective action W [ A ]  = -i ln(CLoutr G,,), for Q C D ~  with the gauge fields 
kept unquantised is 

W [ A ]  = K,[ T,] + K-[  d’x T r ( A , A - ) ( x )  
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where i mean the light-cone coordinates and the matrices T,  satisfy 

d=T,(x, T )  = igA:(x, T)T,(x, 7)  

together with the Feynman-Stueckelberg boundary conditions. A,, (x, T )  is any interpo- 
lation such that A,(x, 0) = 0, A,(x, 1) = A,(x) (the compactness of the support of 
A,,(x, T )  in x for any T is assumed). In  deriving this result, the compactification of 
spacetime is replaced by the vanishing of boundary terms due  to the causality properties 
of T,. 

Now, let us define the current 

or, explicitly (Makowka and  Wanders 1986), 

exp(iW[A]).  ( 2 )  

One can easily check that j ; (x)  is conserved, ( 0 - j -  + D-j+) = 0, and transforms 
covariantly under the gauge transformations of the background field, S(j;(x)), = 

To derive the current algebra we calculate the two-point functions. We obtain 
E (Xlfbac(jL ( X  ) ) A .  

(using the properties of TT listed in Makowka and Wanders (1986)) 

Here D l ( x )  is the Green function fulfilling aD,(x)/ax'  = 6 '2 ' (x )  and the Feynman- 
Stueckelberg boundary conditions. It is now straightforward to calculate the commu- 
tator b:(x, t ) ,  j : ( y ,  t ) ]  using the B J L  definition (Bjorken 1966, Johnson and Low 1966), 
i.e. taking xo  = yo* E in (3 )  and  subtracting. Using 

and taking into account that we are looking for the limit in the sense of distributions 
over x, y, we get 

1 

77 
[ j . f ( x ,  t ) , j h ,  r ) I  = 2 i f ~ j : ( x ,  r )a (x-  - y )  *- D Y ; S ( X - ~ )  

The last equation follows from the fact that there is only a local coupling between A+ 
and A -  in the effective action W[A]. From (4) ,  we obtain further that 

[ j t ( x ,  t ) , j , h ( x  r ) I  = [jl '(x, f ) , j?( .v ,  t ) I  = t ) ~ ( x - y )  
( 5 )  

The above results may be confirmed directly by calculating the relevant Feynman 
graphs. Let us note that the Schwinger terms arising here are of a somewhat unusual 
form-we have covariant derivatives instead of the usual ones (Gamboa Saravi er a1 
1985b). Equations (5) are covariant and satisfy the Jacobi identities. 
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We compute now the three-point functions. To this end we introduce the notation: 

D:’= D,(xk - x / )  . h  - .LI 
J I  = J * i ( X k )  

D:“=D’,(x,  -x/) Mk TZ1(xk)A(zkTz(xk). 

Then we have, for example, 

(Tj:j”cj,”), exp(i W [ A 1 )  
1 

x 
- -- D:”[Dy Tr([M:, M : ’ ] M t ) +  D P  Tr(M:[Mt, M : “ ] ) ] .  (6) 

One can check that in spite of the apparent lack of symmetry the above formula 
is symmetric with respect to any permutation of indices. Using again the BJL definition, 
we calculate the double commutator. The result is 

[ [ j : ( x ) ,  j ; ( y ) ] ,  f : (  z ) ]  , ( I ,  I ;(I = 2ifahd [2ifdC,j:( z )s (x ’  - y ’ ) 6 ( x ’  - z 1  ) 

1 

x 
+- Df:S(xl- z l )S(x l  - y l ) ] .  (7) 

This is consistent with the commutation rules (4). No extra terms related to the singular 
character of the multiple commutator appear (cf Takahashi 1981, Kololov and Yelk- 
hovsky 1989). 

Let us now consider the chiral fermions coupled to the background non-Abelian 
gauge field 

with ys = y o y l  we have y p y s  = E”’  y y  and the fermion fields couple to A- only, S,,, = 
(g /2 )  d2x&y+A-+. Therefore the effective action derived along the lines of Makowka 
and Wanders (1986) is (Falck and Kramer 1987, Manias er a1 1987) 

ag’ 857 5 @ [ A ]  = K+[ T + ] + -  d2x Tr(A+A-)(x) .  

This result is also implicit in the papers of Polyakov and Wiegman (1984) and Rothe 
(1986). The variable a is a parameter related to regularisation ambiguity (Jackiw and  
Rajaraman 1985, Manias et a1 1987, Cabra and Schaposnik 1989). 

The current is defined as above 

-2i 6 
(2(x)), .4 = - - (exp i @ [ A ] )  

g SAZ(x) 

so that 

One easily checks that the chiral current has an  anomalous divergence 
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as well as transformation properties 

a 

87r 6 (  J'.'( x )),",, = F (x)fhac ( p  ( x  )) +- d-e ( x )  

where 'norm' means the in-out matrix element divided by the vacuum persistence 
amplitude. No  choice of the parameter a renders the current covariant. 

Applying the same reasoning as above, we arrive at the following commutation rules: 

G ( x ,  t ) , j , h ( y ,  r ) I  
= [j:(x, t ) ,  jF(.v, t ) ]  

= iJ,,,<jG(x, t ) 6 ( x - - . v ) + -  6,,hdy6(x-y) 
I 

47 

[jg(x, r ) , j ? ( y ,  [)I 
1 

=ifahcji(x, t ) a ( x - j % ) + -  8,bdy6(x-y) 
47r 

ig 
+ ~ f ~ h ' [ A ; ) ( x ,  [ ) - ( a +  1)A;(x, f ) I .  

The above results may be compared with those given by Jo (1985). It is easy to 
check that both the anomalous divergence and  commutators coincide if we put a = 0 
(note the opposite chirality is considered here). In fact, the method of calculating the 
Feynman graphs adopted by Jo gives the effective action depending only on A-(A+) .  

Let us note that although the commutators (8) are obviously not covariant, the 
Jacobi identity is satisfied. 

We may write out the three-point function which is actually given by (6). We used 
it to calculate the double commutators [ A ( x ) ,  [ J ~ ( y ) , 3 ~ ( 2 ) ] ] r " = , " = r " .  Again the result 
is consistent with the current algebra. 
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